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Abstract
In this paper, we give a method to obtain the Schlesinger transformations for
the second members of second and fourth Painlevé hierarchies. The procedure
involves formulating a Riemann–Hilbert problem for a transformation matrix
which transforms the solution of the linear problem but leaves the associated
monodromy data the same.

PACS number: 02.30.Hq

1. Introduction

The six Painlevé equations, PI–PVI, are found by P Painlevé and B Gambier as the only
irreducible second-order ordinary differential equations (ODEs) whose general solutions are
free from movable critical points [1]. One of the important properties of the Painlevé equations
is the existence of Schlesinger transformations [2–4], that is transformations that transform
the solutions of the associated linear problem but preserve the monodromy data.

Recently there has been much interest in higher order analogues of the Pianlevé equations
[5–13]. In [11], non-isospectral scattering problems have been used to derive new hierarchies
of ordinary differential equations. These hierarchies are called second and fourth Painlevé
hierarchies since they have the second and fourth Pianlevé equations, PII and PVI, as first
members, respectively. Other second Painlevé hierarchies can be found in [12, 13].

In this paper, we present a method to obtain the Schlesinger transformations for the second
members of the second and fourth Painlevé hierarchies given in [11]. These transformations
lead to new Bäcklund transformations for these equations. Bäcklund transformations for the
fourth Painlevé hierarchy given in [11] was also studied in [14].
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2. The second member of the PII hierarchy

In [11], a PII hierarchy is given as follows:(
∂−1
x 0
0 ∂−1

x

) 
Rnux +

n−2∑
j=0

cjRj ux


 +

(
gn+1x

−δn

)
=

(
0
0

)
, (1)

where

u = (u, v)T ,

R = 1

2

(
∂xu∂−1

x − ∂x 2

2v + vx∂
−1
x u + ∂x

)
.

(2)

The first member of the PII hierarchy (1), that is n = 1, is the PII equation.
The second member of PII hierarchy (1) reads

uxx = 3uux − u3 − 6uv − 4c0u − 4g3x, (3a)

vxx = −3uvx − 3u2v − 3v2 − 4c0v + 4δ2. (3b)

Since g3 �= 0, without loss of generality we assume that g3 = 1; and we set δ = δ2. Eliminating
v between (3a) and (3b), we get the following fourth-order equation for u

uxxxx = 2uxuxxx

u
+

3(uxx)
2

2u
−

[
2(ux)

2

u2
− 5u2 − 8x

u

]
uxx +

[
5u

2
− 8x

u2

]
(ux)

2

+
8ux

u
− 5

2
u5 − 12c0u

3 − 8xu2 − 4
(
2c2

0 + 6δ + 3
)
u +

8x2

u
. (4)

Equation (4) can be obtained as the compatibility condition of the following linear system
of equations [15]:

∂�

∂λ
= B(λ)�(λ), (5a)

∂�

∂x
= A(λ)�(λ), (5b)

where

A =
(

−λ w
2

−2v/w λ

)
,

B = B3λ
3 + B2λ

2 + B1λ + B0,

B3 = −2σ3, B2 =
(

0 w

−4v/w 0

)
,

B1 =
(

−(v + 2c0) wu/2

−2w−1(vx + uv) (v + 2c0)

)
,

B0 =
(

−(
1
2vx + uv + x

)
w
4 (u2 − ux + 2v + 4c0)

w−1(v2 + uvx − vux + 2u2v − 4δ)
(

1
2vx + uv + x

)
)

,

σ3 =
(

1 0

0 −1

)
, u = −wx

w
.

(6)
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Figure 1.

2.1. Direct problem

The essence of the direct problem is to establish the analytic structure of � with respect to
λ in the entire complex λ-plane. Since (5a) is a linear ODE in λ, the analytic structure is
completely determined by its singular points. Equation (5a) has an irregular singularity at
λ = ∞.

Solution about λ = ∞. The solution �(λ) of (5) in the neighbourhood of the irregular singular
point λ = ∞ has the formal expansion

�∞ = �̂∞λD∞ eQ(λ) = (I + �∞1λ
−1 + · · ·)λD∞ eQ(λ), (7)

where

D∞ = δσ3, Q(λ) = −(
1
2λ4 + c0λ

2 + xλ
)
σ3. (8)

The actual asymptotic behaviour of � changes in certain sectors of the complex λ-plane.
These sectors are determined by Re

(
1
4λ4 + c0λ

2 + xλ
) = 0; thus for large λ the sectors are

asymptotic to the rays arg λ = π
8 (2j − 3), j = 1, 2, . . . , 8. Let �j(λ), j = 1, 2, . . . , 8 be

solutions of (36) such that det �j(λ) = 1 and �j(λ) ∼ �∞ as |λ| → ∞ in the sector
Sj : π

8 (2j − 3) � arg λ < π
8 (2j − 1) (see figure 1). Then the solutions �j(λ) are related by

the Stokes matrices, Gj , as follows

�j+1(λ) = �j(λ)Gj , j = 1, 2, . . . , 7,

�1(λ) = �8(λ e2π i)G8 e−2π iD∞ ,
(9)

where

G2j−1 =
(

1 a2j−1

0 1

)
, G2j =

(
1 0

a2j 1

)
, j = 1, 2, 3, 4. (10)

The monodromy data {aj : j = 1, 2, . . . , 8} satisfies the consistency condition

8∏
j=1

Gj = e2πiD∞ . (11)
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2.2. Schlesinger transformations

Let �(λ) be solution of (5) with parameter δ and let �′(λ) be solution of (5) with parameters
δ′. We consider transformation

�′(λ) = R(λ)�(λ) (12)

such that �′(λ) and �(λ) have the same monodromy data. Let δ′ = δ + n. Then (11) is
invariant if n ∈ Z.

Let R(λ) = Rj(λ) when λ ∈ Sj , j = 1, 2, . . . , 8. Then (9) implies the following RH
problem for R(λ)

Rj+1(λ) = Rj(λ), λ on Cj+1, j = 1, 2, . . . , 7,

R1(λ) = R8(λ e2πi), λ on C1,
(13)

with the boundary conditions

R(λ) ∼ �̂′
∞λnσ3�̂−1

∞ , as |λ| → ∞. (14)

All possible Schlesinger transformations admitted by equation (3) may be generated by
the following transformations:

δ′ = δ + 1, R(1)(λ) =
(

1 0
0 0

)
λ +

(− u
2 −w

4
4
w

0

)
, (15)

δ′ = δ − 1, R(2)(λ) =
(

0 0
0 1

)
λ +

(
0 w

v

− v
w

− 1
2v

(vx + uv)

)
. (16)

Let

�′(λ, x; u′, v′, δ′) = R(1)(λ, x; u, v, α, β)�(λ, x; u, v, δ), (17)

and

�′′(λ, x; u′′, v′′, α′′, β ′′) = R(2)(λ, x; u′, v′, α′, β ′)�′(λ, x; u′, v′, α′, β ′). (18)

Then

R(2)(λ, x; u′, v′, δ′)R(1)(λ, x; u, v, δ) = I. (19)

2.3. Bäcklund Transformations

The linear equation (5a) is transformed under the Schlesinger transformations defined by the
transformation matrices R(j), j = 1, 2 as follows:

∂�′

∂λ
= B ′(λ)�′(λ), (20a)

B ′(λ) =
[
R(j)(λ)B(λ) +

∂

∂λ
R(j)(λ)

]
R−1

(j)(λ). (20b)

Using (20b) we can derive the Bäcklund transformations between solutions u(x) and v(x)

of (3), with parameters δ and solutions u′(x) and v′(x) of (3), with parameters δ′. The Bäcklund
transformations corresponding to the Schlesinger transformations R(j), j = 1, 2 may be listed
as follows:

R(1) : v′ = v − ux,

u′ = 1

(v − ux)
[2uux − vx − u3 − 5uv − 4c0u − 4x],

δ′ = δ + 1, (21)
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R(2) : v′ = −
[(vx

v
+ u

)2
+ u

(vx

v
+ 2u

)
+ 2v + 4c0 − ux − 4δ

v

]
,

u′ =
(vx

v
+ u

)
,

δ′ = δ − 1. (22)

2.4. Special solutions

It is well known that for certain choice of parameters, PII–PVI admit special solutions that are
either rational functions or can be expressed by the classical transcendental functions [16]. In
this section, we will study special solutions of (4).

The Bäcklund transformation (21) breaks down if v − ux = 0 and 2uux − vx − u3 −
5uv − 4c0u − 4x = 0. Eliminating v between these two equations, we obtain

uxx + 3uux + u3 + 4c0u + 4x = 0. (23)

However u and v satisfy (3). This implies that δ must satisfy δ + 1 = 0. Equation (23)
is equation PVI in the complete list of second-order Painlevé equations (see [1] page 334).
Therefore we have shown that if δ = −1, then (4) admits special solution u = yx

y
, where y is

a solution of the linear equation

yxxx = −4c0yx − 4xy. (24)

Another special solution of (4) can be obtained from the Bäcklund transformation (22).
This transformation breaks down when v = δ = 0. Substituting these values in (3), we obtain

uxx − 3uux + u3 + 4c0u + 4x = 0. (25)

The solution of (25) is given by u = − yx

y
, where y is a solution of the linear equation

yxxx = −4c0yx + 4xy. (26)

One can use the transformation (21) and (22) to obtain infinite hierarchies of solutions
of (4). For example, if we apply the transformation (22) to the solution

u = yx

y
, δ = −1, (27)

where y satisfies (24), then we obtain the new solution

u′ = −2yx

y
− 1

y
(
yyxx − y2

x

) [
y3

x + 4c0y
2yx + 4xy3], δ′ = −2. (28)

Applying the transformation (21) to the solution

u = −yx

y
, δ = 0, (29)

where y satisfies (26), we obtain the new solution

u′ = −2yx

y
+

1

y
(
yyxx − y2

x

) [
y3

x + 4c0y
2yx − 4xy3

]
, δ′ = 1. (30)
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3. The second member of the PIV hierarchy

In this section, we consider the second member of a PIV hierarchy given in [11] as follows:

Ln,x = 2Kn + uLn + gn − 2αn,

Kn,x = 1

Ln

[(
Kn +

1

2
gn − αn

)2

− 1

4
β2

n

]
− vLn,

(31)

where Kn = (Kn, Ln)
T is defined recursively as follows:

Kn[u] = Ln[u] +
n−1∑
j=1

cj Lj [u] + gnx

(
0

1

)
,

u = (u, v)T , L1[u] = (v, u)T ,

B1Lj+1[u] = B2Lj [u],

B1 =
(

0 ∂x

∂x 0

)
, B2 = 1

2

(
2∂x ∂xu − ∂2

x

u∂x + ∂2
x v∂x + ∂xv

)
.

(32)

The first member of PIV hierarchy (31), that is n = 1, is the PIV equation.
The second member of PIV hierarchy (31) reads

uxx = 3uux − u3 − 6uv − 2g2xu + 2c1(ux − 2v − u2) + 4α2, (33a)

vxx = (2uv + vx + 2c1v − 2α2 + g2)
2 − β2

2

(2v + u2 − ux + 2g2x + 2c1u)

− 2(uv)x − 2c1vx − v[2uv + vx + 2c1v − 2α2 + g2]. (33b)

Without loss of generality we assume that g2 = 1; and we set α = α2 and β = β2. Eliminating
v between (33a) and (33b), we get the following fourth-order equation for u:

Txx = 1

2T
(T 2 − β2) − 2T 2 + T

[
3

2
u2 + 2c1u + 2x

]
, (34)

where

T = −1

2(3u + 2c1)
[uxx − 2(u + c1)(u

2 + 2c1u + 2x) − 4α]. (35)

Equation (34) can be obtained as the compatibility condition of the following linear system
of equations [15]

∂�

∂λ
= B(λ)�(λ), (36a)

∂�

∂x
= A(λ)�(λ), (36b)
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where

A =
( −λ w

−v/w λ

)
,

B = B2λ
2 + B1λ + B0 + B−1λ

−1,

B2 = −2σ3, B1 =
( −2c1 2w

−2v/w 2c1

)
,

B0 =
( −(v + x) w(u + 2c1)

−w−1(vx + uv + 2c1v) (v + x)

)
,

B−1 =
( −H wL

−
(
H 2− 1

4 β2
)

wL
H

)
,

σ3 =
(

1 0
0 −1

)
,

u = −wx

w
, L = 1

2
[2v + u2 − ux + 2x + 2c1u],

H = 1

2
[vx + 2uv + 2c1v − 2α + 1].

(37)

3.1. Direct Problem

The equation (36a) has a regular singularity at λ = 0 and an irregular singularity at λ = ∞.

Solution about λ = 0. It is well known that the solution of a linear ODE in the neighbourhood
of an isolated regular singular point can be obtained via a convergent power series. In this
particular case, the solution �(λ) of (36) in the neighbourhood of the regular singularity at
λ = 0, for β /∈ Z, has the form

�0(λ) = �̂0λ
D0 = G0(I + �01λ + �02λ

2 + · · ·)λD0, (38)

where

D0 = 1

2
βσ3,

G0 =
(

wLρ1 wLρ2(
H + 1

2β
)
ρ1

(
H − 1

2β
)
ρ2

)
, det G0 = 1,

ρ1 = κ1 exp

[
−

∫ x
(
H − 1

2β
)

L
dx ′

]
, κ1 = constant,

ρ2 = κ2 exp

[
−

∫ x
(
H + 1

2β
)

L
dx ′

]
, κ2 = constant,

(39)

and �01 satisfies the equation

�01 + [�01,D0] = G−1
0 B0G0. (40)

The monodromy matrix about λ = 0 is given as

�0(λ e2πi) = �0(λ) e2πiD0 . (41)

Solution about λ = ∞. Since λ = ∞ is an irregular singular point, the solution �(λ) of (36)
in the neighbourhood of λ = ∞ has the formal expansion

�∞ = �̂∞λD∞ eQ(λ) = (I + �∞1λ
−1 + · · ·)λD∞ eQ(λ), (42)
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Figure 2.

where

D∞ = (
α − 1

2

)
σ3, Q(λ) = −(

2
3λ3 + c1λ

2 + xλ
)
σ3. (43)

The actual asymptotic behaviour of � changes in certain sectors of the complex λ-plane.
These sectors are determined by Re

(
2
3λ3 + c1λ

2 + xλ
) = 0; thus for large λ the sectors are

asymptotic to the rays arg λ = π
6 (2j − 3), j = 1, 2, 3, 4, 5, 6. Let �j(λ), j = 1, 2, 3, 4, 5, 6,

be solutions of (36) such that det �j(λ) = 1 and �j(λ) ∼ �∞ as |λ| → ∞ in the sector
Sj : π

6 (2j − 3) � arg λ < π
6 (2j − 1) (see figure 2). Then the solutions �j(λ) are related by

the Stokes matrices, Gj , as follows:

�j+1(λ) = �j(λ)Gj , j = 1, 2, 3, 4, 5,

�1(λ) = �6(λ e2π i)G6 e−2π iD∞ ,
(44)

where

G2j−1 =
(

1 a2j−1

0 1

)
, G2j =

(
1 0

a2j 1

)
, j = 1, 2, 3. (45)

3.2. Monodromy Data

The relation between �0(λ) and �∞(λ) is given by

�∞(λ) = �0(λ)E0, (46)

where

E0 =
(

b1 b2

b3 b4

)
, det(E0) = 1. (47)

The monodromy data {a1, a2, a3, a4, a5, a6, b1, b2, b3, b4} satisfies the consistency condition

E−1
0 e2π iD0E0 e2π iD∞ =

6∏
j=1

Gj . (48)
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4. Schlesinger transformations

Let �(λ) be solution of (36) with parameters α, β and let �′(λ) be solution of (36) with
parameters α′, β ′. We consider transformation

�′(λ) = R(λ)�(λ) (49)

such that �′(λ) and �(λ) have the same monodromy data. Let α′ = α + n, β ′ = β + m.
Then (48) is invariant if 2n ± m ∈ 2Z.

Let R(λ) = Rj(λ) when λ ∈ Sj , j = 1, 2, 3, 4, 5, 6. Then (44) implies the following RH
problem for R(λ)

Rj+1(λ) = Rj(λ), λ on Cj+1, j = 1, 2, 3, 4, 5,

R1(λ) = −R6(λ e2π i), λ on C1,
(50)

with the boundary conditions

R(λ) ∼ �̂′
0λ

mσ3�̂−1
0 , as λ → 0,

R(λ) ∼ �̂′
∞λnσ3�̂−1

∞ , as |λ| → ∞.
(51)

All possible Schlesinger transformations admitted by equation (36) may be generated by
the following transformations

{
α′ = α + 1

2
β ′ = β + 1

, R(1)(λ) =
(

1 0
0 0

)
λ1/2 +

( 1
2wr1 − 1

2w

−r1 1

)
λ−1/2, (52)

{
α′ = α + 1

2
β ′ = β − 1

, R(2)(λ) =
(

1 0
0 0

)
λ1/2 +

( 1
2wr2 − 1

2w

−r2 1

)
λ−1/2, (53)

{
α′ = α − 1

2
β ′ = β + 1

, R(3)(λ) =
(

0 0
0 1

)
λ1/2 +

(
1 − 1

r1

− v
2w

v
2wr1

)
λ−1/2, (54)

{
α′ = α − 1

2
β ′ = β − 1

, R(4)(λ) =
(

0 0
0 1

)
λ1/2 +

(
1 − 1

r2

− v
2w

v
2wr2

)
λ−1/2, (55)

where r1 = 2H+β

4wL
and r2 = 2H−β

4wL
.

Let

�′(λ, x; u′, v′, α′, β ′) = R(j)(λ, x; u, v, α, β)�(λ, x; u, v, α, β), (56)

and

�′′(λ, x; u′′, v′′, α′′, β ′′) = R(i)(λ, x; u′, v′, α′, β ′)�′(λ, x; u′, v′, α′, β ′). (57)

Then

R(i)(λ, x; u′, v′, α′, β ′)R(j)(λ, x; u, v, α, β) = I, (58)

for (i, j) = (3, 2) and (i, j) = (1, 4). Moreover

R(1)(λ, x; u′, v′, α′, β ′)R(2)(λ, x; u, v, α, β) =
(

0 0
0 1

)
λ +

(
− 1

2u − 1
2w

2
w

0

)
. (59)

The Schlesinger transformation (59) shifts the parameters as α′ = α + 1, β ′ = β.
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5. Bäcklund transformations

The linear equation (36a) is transformed under the Schlesinger transformations defined by the
transformation matrices R(j), j = 1, 2, 3, 4 as follows:

∂�′

∂λ
= B ′(λ)�′(λ), (60a)

B ′(λ) =
[
R(j)(λ)B(λ) +

∂

∂λ
R(j)(λ)

]
R−1

(j)(λ). (60b)

Using (60b) we can derive the Bäcklund transformations between solutions u(x) and v(x)

of (33), with parameters α and β, and solutions u′(x) and v′(x) of (33), with parameters
α′ and β ′. The Bäcklund transformations corresponding to the Schlesinger transformations
R(j), j = 1, 2, 3, 4 may be listed as follows:

R(1) : v′ = − 1

L2

(
H +

1

2
β

) (
uL + H +

1

2
β

)
,

u′ = L(v − ux)(
uL + H + 1

2β
) +

1

L

(
uL + H +

1

2
β

)
,

α′ = α +
1

2
, β ′ = β + 1,

(61)

R(2) : v′ = − 1

L2

(
H − 1

2
β

) (
uL + H − 1

2
β

)
,

u′ = L(v − ux)(
uL + H − 1

2β
) +

1

L

(
uL + H − 1

2
β

)
,

α′ = α +
1

2
, β ′ = β − 1,

(62)

R(3) : v′ = − L(
H + 1

2β
)

[
Lv2(

H + 1
2β

) + vx + uv

]
,

u′ = − Lv(
H + 1

2β
) −

(
H + 1

2β
)

L
,

α′ = α − 1

2
, β ′ = β + 1,

(63)

R(4) : v′ = − L(
H − 1

2β
)

[
Lv2(

H − 1
2β

) + vx + uv

]
,

u′ = − Lv(
H − 1

2β
) −

(
H − 1

2β
)

L
,

α′ = α − 1

2
, β ′ = β − 1.

(64)

5.1. Special solutions

In this section, we will derive special solutions for (33). The Bäcklund transformation (61)
breaks down when v = ux and uL + H + 1

2β = 0. Substituting v = ux into uL + H + 1
2β = 0,

we obtain

uxx + (3u + 2c1)ux + u3 + 2c1u
2 + 2xu + β − 2α + 1 = 0. (65)
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However u and v satisfy (33). This implies that α and β must satisfy 2α +β +1 = 0. Therefore
we have shown that if 2α + β + 1 = 0, then (33) admits special solution v = ux and u is a
solution of the second Painlevé equation (65).

One can use the transformations (61)–(64) to obtain infinite hierarchies of rational
solutions of (33). For example, if one start by the solution of (33)

v(x) = u(x) = 0, α = 0, β = 1, (66)

then the transformation (61) yields the following solution of (33):

v′(x) = −1

x2
, u′(x) = 1

x
, α′ = 1

2
, β ′ = 2. (67)

Applying the transformation (61) to the solution (67), we obtain the solution

v′′(x) = −2(x2 − c1)

x2 + c1
, u′′(x) = x4 − 2c1x

2 − c2
1

x3(x2 + c1)
, α′′ = 1, β ′′ = 3. (68)

If we apply the transformation (62) to the solution α = α0, β = −(2α0 + 1), v = ux and
u is a solution of (65), then we obtain a new solution α′ = α0 + 1

2 , β ′ = −(2α0 + 2), v′ = u′
x

and u′ is a solution of the equation

u′
xx + (3u′ + 2c1)u

′
x + u′3 + 2c1u

′2 + 2xu′ − 4α0 − 2 = 0. (69)

Applying the transformation (63) to the solution α = α0, β = −(2α0 + 1), v = ux and u is a
solution of (65), then we obtain a new solution α′ = α0 − 1

2 , β ′ = −2α0, v
′ = u′

x and u′ is a
solution of the equation

u′
xx + (3u′ + 2c1)u

′
x + u′3 + 2c1u

′2 + 2xu′ − 4α0 + 2 = 0. (70)

Thus we can obtain a hierarchy of special solutions α = α0 + n
2 , β = −(2α0 + n + 1), n ∈

Z, v = ux and u is a solution of (65).
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